BACKSCATTER OF ULTRASONIC WAVES
FROM A ROUGH LAYER

Technical Report EE-TR-4

Department of Electrical Engineering
Kansas State University
Manhattan, Kansas

MAY, 1966



KANSAS STATE UNIVERSITY
MANHATTAN, KANSAS

Technical Report EE-TR-4

BACKSCATTER OF ULTRASONIC WAVES
FROM A ROUGH LAYER

By

Wu-Shi Shung
W. W. Koepsel

S. H. Durrani

Department of Electrical Engineering

MAY, 1966

This work was supported:
partially by NsG 692 and

by a subcontract (through
University of Kansas) of
NASA contract #NSR-17-004-003



Ay P
(\‘ L B l 76
ABSTRACT X17¢

The backscatter from a rough surface is usually calculated
by using Kirchhoff's approximation. 1In this report, the Kirch-
hoff's approximation is extended to the backscattering of an
acoustic wave from a rough layer. The random rough interface of
the layer is assumed to have one-dimensional Gaussian distri-
buted surface heights.

Gaussian and exponential autocorrelation functions are used
to represent the correlation of the heights at two different
points. Expressions for the variance of the scattering coefficient
are derived in the case that the rough side is very rough.

Experimental investigations were conducted at ultrasonic
frequenéiésuon a target designed to have Gaussian distribution
and correlation. The measured variance of the scattering coef-
ficient p, D{p}, has the following properties:

(a) D{p} is highly frequency dependent; it decreases as

the frequency increases.

(B) D{pl} decreases more rapidly than that obtained from a

rough surface.

(C) The dependence of D{p} on the incidence angle el is

such that it increases as 8, increases, if 8, is small.

The experimental results lie between the theoretical results
calculated for two kinds of correlation. This agrees with the

measured value of the correlation function of the target.
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I. INTRODUCTION

The problem of the reflection of an acoustic plane wave from
a plane interface separating two isotropic media has been solved
by many physicists and geologists. Exact forms of the generated
waves are given, related to the incidence angle and the acoustic
impedances of the media. Brekhovskikh extended the work to deal
with a layer having plane interfaces. The nature of wave scatter-
ed by a layer with rough interface, however, is generally unknown.

The backscattering of acoustic wave from a rough layer is
analyzed in this report. The model of the layer considered con-
tains a smooth interface in front and a random rough interface
in back. The Kirchhoff's approximation for evaluating the scat-
tering field of a rough surface (Beckmann 1963) is extended to
deal with such a layer; experimental work has also been done for
this model at different incidence angles and frequencies.

A tentative try is also made on the evaluation of back-
scatter from a layer with a very rough surface in the front.
Equations are derived for this layer with no experimental
support.

Owing to the analogies between acoustic and electromag-
netic waves, the results of this work can be directly applied to
the same problems in electromagnetic waves. The radar cross sec-
tion is obtained just by modifying the variance of the scattering
coefficient with a scaling factor. Application of the results
can be found in the survey of lunar surface and in geological

explorations.



I1. EQUATIONS OF ACOUSTIC WAVE MOTION

2.1 Stresses, strains, and elastic constants

In an ideal isotropic homogeneous medium, a wave may propa-
gate without any loss of amplitude due to internal friction. When
the medium is defomable and undergoes a change in configuration
due to the application of forces, the body is said to be strained.
(Redwood 1960, Ewing 1957). It is assumed that a point P (X, Y.
z) is displaced, and the coordinates of the displacement are (u,
v, W). An adjacent point Q(x+éx,y+8y,2z+82z) is displaced by (u+
su,v+év,w+éw). By Taylor's theorem, neglecting the higher terms

under the assumption of small perturbation,

au

au

ou

u+ fu=nu+ % éx + 3; sy + 3z 6z ’
I V' v v
v+ dév=v+ 5% §x + 3y sy + 52 5z ’ (2.1)
_ W oW w
w+6w—w+-a-§6x+ay6y+azéz .
The analysis may be simplified by writing
ou _ v _ ow _
ax . Sxx f ay . Syy ' 3z~ Szz '
v o, 3. u  dw o
3 Ty T Sxy T Syx ’ 5z T 3x ~ %zx T Sxz ’
W , IV _ _
3y t3z = €yz = €zy ' (2.2)
v _ du _ du _ W _ w _ 3y _
x 3y - Yz v 3z x - Yy ’ 3y 0z Yy :
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Then the displacements may be rewritten as

_ 1 1
u+6u—u+(exx6x+§exy6y+§ex26z)+(myéz-m26y) ’

_ 1 1 _
v+6v-v+(feyx6x+eyyéy+§eyzdz)+(w26y mxax) ’ (2.3)
w+6w=w+(%e 6x+1 Syte__62)+(w _O0y-uw, 6X)

zx iezy z2 x°Y Y °

e
Cxx’ vy’ €2z

vicinity of P (x, v, 2z);

represent simple extensions of the medium in the

exy’ eyz, e,z represent the shear strains; and Wt wy' w, repre-
sent the rotation of the element as a rigid body.
To express the displacement in vector form
> > > -
S = ux, + wZ + VY, ’ (2.4)

where §° ’ §° , and Eo are unit vectors in the directions of
X-, y-, and 2- axes, respectively.

For small perturbation, the shear strain is so small that it
has no contribution to the volume change. Then the cubic dilata-

tion A is defined as

(6x+exx6x)(6y+e Gy)(szjezzﬁz)réxayéz (2.5)

A = l1lim vy
§x,8y,62-+0 dxdydz

e . +
xx © Syy * e

o ->
div s ’

and the rotational displacement » becomes



= % curl s . (2.6)

To discuss the force acting on an element of volume in a
medium, nine components of stress, which have the units of force/
area, are required. Let the stresses be denoted by Tij' where
the first subscript is associated with the axis normal to the
place on which the stress acts, and the second subscript to the
direction of the stress. In an isotropic homogeneous medium,
there are only two elastic constants, Lame's constants ) and M
to relate the stress and strain together. In the case of ideal

fluid and ideal gas u = 0. The stress and strain relations by

Lame are as follows:

T x=l(e +e

+ =AA+
X XX Yy ezzHZ“exx AA ZHCyx !

T _=i({e _+e e __}+zZue __=XAxzue
vy XX Tyy 2z Yy 144 !

z=l(e +e

%x yy+ezz)4auezz=xA+zuezz ’

T
4

ye. =pe , (2.7)

Txy Tyx MCxy "Cyx

= = =ue
Tyz sz ueyz H zy ’

= = =ye °
TZX sz “ezx " Xz

From (2.7), other elastic constants can be derived as follows,

(Lamb 1925):
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(a). Uniform stress and dilatation, t__, and

T =T =
XX Yy zz

2
txx—ryy—rzz—(x+§u)A—kA

k=(x+%u) is the compressibility.

(b) . Shear stress Txy 25 defined by Eq. (2.7)

T T
Txy - _yz _ _zx

=
Cxy eyz ©2x

is the coefficient of rigidity.

(c). Longitudinal stress, ryy=rzz=0 ’
_ u(3a+2u) _
XX A+ Cyx = Feyyx ’

E is the Young's Modulus.
(d). Poisson's ratio, o , represents the ratio of lateral
contraction to longitudinal extension. In this case,

tyy = TZZ =0 ’ eyy = ezz = oexx , and ¢ ZTT:ET .

The constants A, u, k can be expressed in terms of Young's

Modulus and Poisson's Radio:

oE

A = Lame's constant = (1+0) (1-20) ’

= Rigidity = 2 +o ’ (2.8)
] ] s E

k = Compressibility = 3(1-20) .

2.2 The equationsof motion

According to Newton's equation of motion, the x-component of

the resultant force on the volume element is



?Txx

X

32u _
(péx Gydz)ng = (Txx + 6x Txx)GYGZ

9T
4 —-—Lx - - ,
+ (T + by sy Tyx)ézéx

yx
asz
+ (sz + — Gz-rzx)6x6y ’
3T T 0T
32u _ XX X zZX
or, Pz = (5% 55+ 532 ) ’

where o is the density of the medium. For an isotropic homo-

geneous medium, Equation (2.7) holds, giving

P _2_3211 = _3_ (rAa+2pe ) + _3 (ne ) + L (ue )
ot Ix y XX oy ¥X 9z ZX
dw Jw
= (A+2u) %% - zp( 3;5 - ggx) .

Similar arguments apply to the y-, and z- components, so that

-’
2g

[+3

o = (A+2u) grad A - 2u curl o . (2.9)

i

Equation (2.9) is the equation of motion in an isotropic medium.
It is usually rewritten in the form of displacement potentials ¢

and $ by the following transformations

s = - (grad ¢ ® curl V) ’ (2.10)

div ¢ = 0 )



Substituting (2.10) into (2.9),
2

DA—Z(grad ¢+curl$3=(x+2p)grad(vc¢)-ucurl(curlcurl$),
ot

32 > 2 2+

p—, (grad¢+curly)=(r4zu)grad(v-¢)+ucurl(v-y), (2.11)
at

where v2 denotes the Laplacian, defined by V2¢ = Div. Grad ¢

for a scalar ¢, and V2$ = Grad Div $—curl curl $ for a vector $.

In the cartesian coordinate system,

By taking the divergence and curl on Equation (2.11l) the scalar

and vector potentials can be separated:

s c?2v2¢ ,c %= A2 (2.12)
ot » ! e

223 2 2+ 2

SL=c % ,c =t . (2.13)
ot S S e

In Equation (2.11) and (2.12), the scalar displacement
potential ¢ travels with velocity Cl and involves no rotation; it
is called "longitudinal", or "compressional", or "dilatational"
or "irrotational", or "P-Wave"; the vector displacement potential
$ travels with velocity Cs and involves rotation; it is called
"shear", or "transverse", or "latera! ", or "equivoluminal", or

"rotational", or "digtortional", or "S-Wave". The names Longi-

tudinal and Shear waves shall be used throughout this report.



In ideal gases and fluids, the ordinary acoustic wave init-
iates a wave motion in which the sign of dilatation changes very
fast so that there is no time for sensible transfer of heat be-
tween adjacent portions of the medium. The flow of heat hardly
sets in from one element to another before its direction is re-
versed, and the conditions are practically adiabatic. Moreover;
since u = o, no shear wave propagates in an ideal gas or fluid.

The Lame's constant A for an ideal gas is found to be

A= Kad = APO (2.14)

Kad: adiabatic compressibility,
A : (specific heat at constant volume)/(specific
heat at constant pressure),
Po : gas pressure.
In an ideal fluid, A = Kad is usually influenced by many
factors. ) is related to the longitudinal wave velocity'cz
by C, = Y3/p , and an empirical equation giving C, in water is

2

C, = 141,000+4.21t-3.7t +1105+0.018d, (2.15)

Q
"

longitudinal wave velocity (cm/sec),
t = temperature (C),

s = salinity (1/1000 in weight),

d = depth (cm).

2.3 General equation.:for damped waves

The dissipative forces in acoustic wave motion are propor-
tional to the velocity of the particles in the medium for small
perturbations. The force of the elastic stress must both accel-
erate the medium and overcome the dissipative forces, so the
equations of -motion, Equations (2.11) and (2.12), are modified

(Kinsler and Frey 1950) as follows:



2
2.2
i_% + % %% = C,“v%, (2.16)
ot
-+ >
2
_.W.atz + 2 W = c v, (2.17)
]

(mass) (timef4
(volume)

The general solution of Equations (2.16) and (2.17) has the

usual form E = Aél(x.r-mt)

where n has the unit of

» where r is the distance from certain
reference point. Substituting into Equations (2.16) or (2.17),

the propagation constant A is found to be

K4Aa

>
It

where
K = w/C is the wave number,

n/2pC is the attenuation constant.

Q

For water at room temperature, the attenuation constant is
about one thousandth of the value of air. For this reason,
ultrasonics are very well suited for underwater signal transmis-
sion as opposed to the case in air. As for the possible shear
waves transmission in viscous gas and liquid, the skin depth is
found to be vY2f/pw , where £ is the shear viscosity.

These waves behave very much like electromagnetic waves
penetrating a metal. For water at 1 mc, the skin depth is only
5.6 x lo-scm. In most cases, shear wave propagation can be

neglected in gases and liquid.



3. REFLECTION OF PLANE WAVE FROM A PLANE INTERFACE

3.1 Boundary conditions

The continuity of normal and tangential components of dis-
placements and stresses across the interf#ce give the following
boundary conditions (Brekhovskikh 1960) :

. (31-32)=o i
x (8;-8,)=0 ; (3.1)

. (?l-_{2)=° H

S+ By By Y

> >
X (11-12)-0
Taking the z-axis as the normal to the plane, Equation

(3.1) can be expressed in terms of displacement potentials ¢

. and § as,
- oY Y

> 2z - u —X - _x -

n-s:wW=-(3 + 3% 3y )

ay oy Y RV
Axa=-ux +ve =(32 4+ —%2 _ _¥y X 80 L X L) .
nxs=-ux tvy =3y * 3y 57 %ot 5y < 3z % ) Yo
2 2 ;
2 9y Iy z
\ 2 2p 3 'y x 07¢ ] .
N.1=T__=0 |pp+ == ——% at + T3 1) )
zz [ Ks2( 5% 3z3dx = 9z3y L?j
-»> ->__ -> + -»
nxt= szxo sz70
2 2 2 2
) 9 ] >
=u(232¢+awz- "’z+__;y____"’_§ Xo
X3z dyodz 5i2 5% IXay
2 2 2 2
L P L L

- Y \&iyaz" Tysz ay? 522 5zox | Yo *

3.2 Reflection of waves at the interface of two isotropic and

homogeneous media

Let A, B, and D represent the amplitudes of the potential

of incident, reflected, and transmitted waves, where the subscripts

-10-
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{ and s denoting longitudinal and shear wave (Fig. 1). Accord-
ing to Huygen's principle, the phase velocities for each wave

are equal at the boundary, therefore,

. - - + p— », -— -’
K1£=|KL1|=Kf£—IK1£I ' K1s"|K1s|=K15‘|K15|

C = Cig = C1s - Clz = Clsw - €2y = C2sm_
p  sine, sinv, sing, sinv¥7 sine,  sinv¥,
= ‘ = : . 3.2
8, = 8, Yi YI’ (3.2)

It is shown that the longitudinal or vertically polarized wave,
v =$y 70 » is always reflected and transmitted in the modes of
longitudinal and vertically polarized shear waves (Brekhovskikh,
1960). In other words, the vector displacements potentials in-
volved can always be assumed to‘be in the direction of the
y-axis and independent of y. The potentials in media #1 and #2

are assumed as follows:

¢1=Al-exp [ile(xsinel+zcosel)] + Bl°eXp [iKlz(xsinel - zcos9)],

$1=As-exp [iKIs(xsinfl+zcosY1)]§°+Bs-exp [iKléxsinfa-zcosra)]§o

¢,=D, exp [iK2£(xsinez+zcosez)],

exp [iKzs(xsinY2+zcos(2)]. (3.3)

The boundary conditions at z=0 are

3¢ oY 9¢ oy
1 iy 2 + 2y
2z 3X 32 X

(3.4)

20; Ay, A4, 3oy
X Y 3X oz

(3.5)
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2 2 2 2
2p 3%¢ %Y 2p,/37 ¢ 9y
1 1 _ ly). 2 2 _ 2y) .
P16y * Ef“( ) 3Xdz ) paéy + K? ‘a 2 3X02Z ) d (3.6)
1s 2s x

s ¢ 32

02y, o%y) 4 224,, %,
2u13§35 + u1(;;§—x - ng_x)= 2u23§3; + “2(;;7-1 - ;;z—%) . (3.7)

Upon substituting Equation (3.3) into Equations (3.4), (3.5),
(3.6) and (3.7), the boundary conditions are expressed in terms

of potentials as follows:
(AL'BL)K1£°0591+(As+38)K1SSinf1=DLKZlC°592+DSK23513 2 ¢ (3.8)

(A£+Bz)Kleinel-(As-Bs)Klsc°S(l=D2K2LSinel-DsKZscosY2 ; (3.9)

K
18 . 2
pl(Az+B£)(l-2;I-sin el)+pl(As-Bs)sin2Yl =

1s 2
D (1-2K2“ in%e.)+p.D_sin2?, (3.10)
P2%y KTS 2/ TPPgBLNLT, .
28
K2
z &=
'pl(Az-Bz) Ei—sinZBI-pl(A$+B,)cos2f1
1ls
K,
p,D, ;i—slnez-pznscoszfé . (3.11)
28

By setting Ag, or A) equal to zero, corresponding to longitudinal
or shear wave incidence, respectively, the amplitude of the
generated waves can be expressed in terms of the amplitude of the
the incident wave potential. It is to be noted that when the
incident angle is small, all the sinusoidal term tends to the
limits 1 and 0. Then the boundary condition is further simplified

to
(AQ-BL)KILSDIKZQ ’ (3.12)
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-(AS-BS)KIS=—DSK25 ; (3.13)
-pl(Az+Bz)=°2D2 : (3.14)
-pl(As+Bs)=-pst . (3.15)

Solving Equations (3.12), (3.13), (3.14), and (3.15)

By P2%237P1C1, Dy _ 2050, 1 . (3.16)
bl r - e ——————— Y — f [ )
Ay paCopte1Cyy By 0040 Cyy P2
By ,C2611€1s P 2pC)g Py
— (3.17)

———=———-—-——-——’ ——— TR e———————————e % -
Ay pgCogtr1Cig" By 000 G 0

Equations (3.16) and (3.17) imply that when the angle of
incidence is small, no change of mode occurs at the interface
of acoustic wave motion. This is a very:important limitation
in the acoustic simulation problem. The éngle of incidence has
to be very small if change of mode is to be avoided in the

experiment.



4. THE GENERAL KIRCHHOFF SOLUTION FOR SCATTERING
FROM ROUGH SURFACES

4.1 General solution for surface with one dimensional roughness

Beckmann (Beckmann, 1963) has derived the solution for the
mean scattered field, power, and the statistical distribution of
those quéntities by the Kirchhoff approximation method. The
principal limit of the approximation is that the surface must
not contain a large amount of sharp edges, sharp points or other
irregularities with small radii of curvature. The criterion for

the validity of the approximation is given as

4Krccose>>x,
where r, is the radius of curvature, 6 is the local angle of
incidence, and A is the wavelength of the wave.

The rough surface is given by the function

£ = £(x) (4.1)
with mean level coinciding with the plane

z2=0. (4.2)
The medium in the space z>£(x) is assumed to be isotropic in

which a monochromatic plane longitudinal wave

ikl'r-imt

El=e (4.3)
is transmitted, where
‘ -+
i =ﬂ.& (4.4)
1 K

is the wave number of the incident wave,fwhich is assumed to
lie in the xz-plane (Fig. 2), and Y is the radius vector

> > -+
r = xxo+&;(x)zo . (4.5)

-15-
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The angle of incidence is denoted by 81 the scattering angle
by Py where the magnitude of k2 and k1 are equal:
Ryl = 1%y | =x =22, (4.6)
Kz also lies in the xz-éiane for a one-dimensional rough scat-
tering surface.
In order to deal with plane scattered waves, the observa-
tion point P is removed to the Fraunhofer zone of diffraction,
R'+», where R' is the distance from P to a point B(x,£(x)) on

the rough surface (Fig. 2). In other words,

'= —* o*
K2R K2R° Kt r, (4.7)

where R° is the distance of P from the origin. The scattered

potential E, at P is given by the Helmholtz integral

1 (( (gdv _, 3
EZ (pP)= HJ{S(EBH \Uan)ds, (4.8)
where
iKR' iKR -ikK_-T
e . e (o) z .
(e}

E and %% are the potential and its normal derivative on the
rough surface S. The values of those two quafitities are approxi-
mated in the Kirchhoff method by the value that would exist on the

tangent plane at that point, i. e.,

(E)s = (1+R)El ) (4.10)
3E, _ iq_ > .2
(?K g = 1(1-RIEK n, (4.11)

n is the normal to the surface at the considered point B (Fig. 3)
and R is the longitudinal wave reflection coefficient of a

smooth plane.
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FIG. 3. LOCAL SCATTERING GEOMETRY
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Then
0 = el—s = el—arc‘tan£1x) . (4.12)

Substituting Equations (4.9), (4.10), and (4.11]) in (4.8),

E,(P) = %758 (14R)E, (=i K, n)=-i¥(1-R)E K -7 as
- %;Ll et RyRo) - F- gk R))-(R 4k, R as,
or
E (P) = ie%—f—ﬁ—:“jjs(m‘:’—ﬁ)eﬁ’;-ﬁds (4.13)
where

. »> -+
Kl = K(51nelxo—coselzo),

. > >
iz = K(51n62x6+cosezz°),

-)__.-)+ >
n = sxnexo cosB?O,
> -+
r = x§o+£(x)zo/
-+
v o= kR,
. . -> ->
= K(sxnel-sn\ez)xo-K(cosel+cosez)zo
_ ->+-+
= VeXo™Vz%0
. . -> >
P = K(s:Lnel:G-SJ.nez)xo+K(cosez—cosel)zo

ds = secBgdx, tans=¢“(x) .
For a one dimensional rough surface extending from x=-L to L,
Equation (4.13) may be rewritten in the scalar form.

. L . .
E. = ike*kRo (az—b)elv x+lVzgdx (444‘)
2 Z'nRo L
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where

a = (l—R)sinel+(l+R)sine2 ’ (4.15)

b = (1+R)cosez—(l-R)cose1 . (4.16)

The scattering coefficient p is defined as
E
=z . (4.17)
20 '
Where Eso is the potential reflected in the direction of specu-
lar direction (92=61) by a smooth plane medium-air interface

of the same dimension. In this case

VXSO,E=E’=O,R=-1, 61=62
so that
. L . L
ikelkR° a ikelkRo 2R a
E20=-m:— -bx=—4-1m;——' - COSGlx,
-L -L
or .
E._ = ikeikROLcosel . 4.18
20- ﬂR (O)
(o)
Hence, from Equations (4.14), (4.17), and (4.18),
L . .
It (ag -=b) et VxX+1Vzig, (4.19)
e = ZLcosel,g ¢
For a smooth surface,
L
= 1 (1 iv x
p = 1333331 (1+R)cose2 (1 R)cosel e 'x“dx
-L

(1+R)cose2-(1-R)COS81 .gincv I, |, (4.20)
X
2cos8

where
sin VxL

sinc VxL = ~V T .

X
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As a special case, if R=-1, then p in Equation (4.20) becomes

Py = sinc V. L . (4.21)
For a rough surface with constant reflection coefficient R, a

and b are constant; from Equation (4.19),
L +> > . .$ > r.L
1 Vx iver iog _iv-rx
p = g -(b+ta_2 e dx- 5 € [
4Lcos 1 [ Vz 5 L v, L

‘ L
- -1 2R+2Rcos (671+62) 1v r
4Lcose cos@,+cose. dx-e(L).

1 1 2 -L

The second termacounts for the edge effect tends to zero when

L>>A. Thus, ignoring the edge effect,

L , > >
p = Lo g etV'Tax , (4.22)
2L L
where
F = - Rsec | = 1+cos(91+qz__ ’ (4.23)

C0561+00592

VF = 3%[(sinel—sinez)x-(cosel+cosez)E(x)](4.24)

4.2 Rough surface as random process

The surface height g(x) is assumed to be a random variable
assuming values z with a probability density w(z), the mean

value, denoted by angular bracket <> , is

<g(x)> =0 ’ (4.25)

and the mean value of the integral for a stationary random

surface is
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L L
> >
J.v-rd - eivxx eivia dx
~L -L
L
- ivgE eivxxdx
-L
L
= x(v,) g elVx®ax . (4.26)
-L

x(vg) = 5 w(z)elvzzdz "is the characteristic function associ-
ated with the distribution w(z). From Equation (4.26) the mean

scattering coefficient

<p> = %3 x(vy)sinc vyL . (4.27)

The variance of the scattering coefficient D{p} corresponding

to the mean of the normalized scattered power is defined as
E, |2
<pp*> =(§- ‘ > = D{p} + <p><p*> . (4.28)

|
The asterisk * denotes the complex conjugate, and from Equation

(4.22),
, (T (L
pos = -, elVx(x9-%2) ivz(£1-85) g4.14x,
a?) ) L

Denoting eivz(gl-gz) by xz(vz-vz), then from Equation (4.28),

LrL

pp* = E—z x2(vz,-vz) elvx(xl-XZ)dxldx2
4L
-L |-L
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where

[ w(zl,zz)eivz(gl_gz)dz dz

1772

Xy (v, -v ) = elV (81785) = g—m
and

Elz E(xl) ’ €2=£ (xz) .

xz(vz,—vz) is the two-dimensional characteristic function
of the distribution w( z, 22). The random rough surface is

assumed to have a Gaussian distribution

1l . 2 2
—_— -z°/2
wiz) = 5—p e % /20 (4.30)
and the two-dimensional distribution is
2 2
1 . ) z, Zc(r)zlzz+z2 (4.31)
W(Zl,ZZ,T) = 5 exp 5 > .
2n6°Y1-c2 (1) 20“(1-c* (1))
02= <22> is the variance of the rough surface,
<%1%2,
c(t)= —> is the autocorrelation function of the rough
< Zl >
surface,

=X, "X, is the separation factor between two points %y

and xz.

The autocorrelation function usually assumes the following two

forms:
<22 _
(i). c(r)=e" ' / gaussian correlated, (4.32)
(ii). c(T)=e-|TI/T exponentially correlated, (4.33)

T is called the correlation distance, which is much less than
L to assure a random surface.

The one- and two-dimensional characteristic functions are
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evaluated as below (Appendix):

® 2 .
X(Vz) = g 1 ™2 /20 iVzZ g,
na
- - %'-O'Z\IZ2
=e 29 (4.34)
where
g = azvz2 5 (4.35)

Xz(qu-Vz) 1772

-—t | -0

\ X Aw(zl,zzr)elvz(zl—zz)dz dz

exp -g(l-c(t)) . (4.36)
From Equations (4.22), (4.26), (4.28), and (4.29), the variance
of p is

D{p} = <pp*>—<p><p*>

LrL
2 .
= LZ g { elvx (xl Xz) X2 (vz ,—Vz) -X (vz) X* (vz) dxldxz'

-L '-L
(4.37)
Using the relative coordinate t already defined as
R (4.38)
and introducing the center-of-mass coordinate
Xg = 3%q+x,) (4.39)

the equation (4.37) can be rewritten as

L 2L
2 . 3(x,,x,)
F ivert 1772
D{p}=___s dx S [e X' oy, (t)=-xx* dr
4L2 -L °)_o1, 2 ] aixo,ri

p2 2L 1 1 -1/2
==—_.2L. etVxT XZ(T)'x-x* .det dt
ar? g_zg 1 +1/2

2 2L
F_ ivgt _—yy ¥
—2L S-zi {Xz(T) XX]dT .
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From Equations (4.34) and (4.36), D{p} can be expressed in terms

of c(t) as

2 2L vt gc(t)
-2L.

Two kinds of correlation functions, Gaussian and exponential,
are considered for g<<l, and g>>1 .
(i) . Gaussian correlated surface,
(A) If g<1, egc(r)can be expanded by a uniformly

convergent series.

2L :
2 _ . ® mm
D{p}=§—e 95 elvxtgélg—%TiEldr
-2L *
=F2 -gg eivx-r §_9mcm(1)dt, since L>>T
2 - m=l me.
2 © m - 2T2
ATET 93 _ g e—3 . (4.41)
2L n=1 M /m_ m
If g<<1,
_/7TF? 2.2, .
Dip}="22E 2 exp [-v 2r?/a] ; (4.42)
g=1
TF%g -9 -V T /4 /rrr?
(B) g>,>1:
Cop2(2L _ (l_e—Tz/Tz) de
Dip} = ES e'VxT [e™9 "1}
J =2L
2L 2 ,.2
2 . _ _-t/T _
= %g etVxTe g(l-e d1 -2F2e gsinchxL
-2L
L 2 ,.2
. pl . - _mT /T
%f S elVxT ~g(1-e ‘)dt
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Because g is much greater than unity, the integrand is neglible
if t/T is not in the close vicinity of zero; the integral is

therefore simplified as

2 o 2,2
Do) Es = g Jivgr g [1-(1-<2/1?)] ar
2(° 2,2
= FLS elVxTo=9T /T ar
2 2,2
. ITF" m vy T
=3 exp[ jg } . (4.44)

(ii) . Exponentially correlated surface: the same procedure

in (i) can be followed.

(a) g<1,
2 © m 2
D{p} /EF e g Zg—l’% ’ (4.45)
m=1 " m +vx T
if g<<1,
2 2 ‘
D{pl= /;E . g? 5=y * (4.46)
l+vx T
(B) g>>1,
D{p} = Ei ‘j_ﬂzj__z R (4.47)
p L . g .
g +vx T

4.3 Statistical distribution of the field

The mean scattered field and power is showrin Equation
(4.2); the probability distribution of those quantities can be
found'by looking at the random variable p. From Egquation

(3.22),
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L
, > , n . .
o = % e;v.rdx - ng ii? j}_elvxxj+1vzg(xj)
-L j=1
= A> elV3
j=1
= re1¢ . (4.48)
_ FAx . R
A = - is a constant, and wj is a random quantity. Beckmann

has shown that for a very rough random surface (g>>1,<p>Z0)
with zero mean <p>=0, the distribution of the resultant phase V¢
is uniform

wiv) = 3= , —mey<n, (4.49)

and the distribution of the amplitude r is Rayleigh distributed

2
w(r) = %f?} e-r /D{D}

The variance of pp* is found to be

. (4.50)

D{pp*}=s r4p(r)dr—D2{o}
o]

2
(®2rd 7T /Ple}grp(p)
, bip}

= D%(p} (4.51)
The standard deviation of pp*

VD{pp*} = D{p} (4.52)
The normalized scattered power pp* is found having its mean

value and standard deviation equal to D{p}

4,4 The effect of absorption in the medium

The presence of absorption of the space in which the wave
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is transmitted has a great influence on the mean scattered
powers. The damped wave equation has a general solution
o> . .
E = elk-r(l-la/k)-lwt ,

which implies a change in the value of Ve and v, of Equation

(4.13).
Let
‘= - &
Y = V& ik Vx ¢
. _ - S
V. =V, ix Vg v
® 2,, 2, Lo 2
X(V;) - 1 e 2 /2a el(Vz-lEVz) dz
'2n02
. 2.2 2. 2 2
= lo'v, m/k_e {o Vg (1__7)]
ig2/k - 2
= elg . [%(1‘ gi) . (4.53)
k
Hence,
-g(1-a?/k%) . (4.54)

* =
x (v, )x*(v,) e
The two-dimensional characteristic function xz(v;,-vé)is

z

® . Zp
VS | ivz(l-id/k) (1-c)z dz
XAV, e=vy,) = .2_.2_3 e "2 2.{20) 2

2
© (zl—czz)

| & 202a-c?) oivz (1-1a/K) (21-¢22) 3, _cp
® V2102 (1-c2) 1772
_ _iga/k 1(1 ~a?/x? oi(l-c)v, (1-ia/k)z,
2“02 -0 2
= (22/20)d22

= oigac/k _-g(1-*2/k?) (1-c), (4.55)
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2L

N

eltVx® elg“c/k.exp —g(l—az/kz)(l—c) —exp[}g(l—az/kz)]dt
-2L

D{p} =

Nru
o

For a very rough surface (g>>1), c(t) is significant only for

very small value of 1/T,

Dip} = g elVx Lexp [-g(1-a?/K?) (1-c) |19 kg,

@

or

2 (7
Dip} = E- y e’Vx" expl-g(1-a/k?) (1-c)] ar . (4.56)
L
From the analogy between (4.56) and (4.40), the variance of »p,
i. e. D{p} is

(i) . Gaussian correlated surface:

TF2 m VXZTZ
D{p} = . -exp | - (4.57)
21, g(l-a2/k?) [ 4g (1-a*/k?
(ii). Exponentially correlated surface:
2 2,2
- B _g(l-d"/k") . (4.58)

gz(l-az/kz)z-i-vx T
Equations (4.17), (4.57), and (4.58) shows that the abosrption
will reduce the value of <EE*> , and high-frequency wave causes
more attenuation than a low-frequency wave.

4.5 Limitations of the general Kirchhoff method applied to

acoustic wave scattering

The acoustic wave reflection coefficient is a function of
the local angle of incidence, or alternatively, is a function of

91, and £1x) .
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R = R(6) = R(e1 - arctan’' (x) . (4.12)
The approximations of <af”> and <b> in Equation (4.14), which
are always used for varying reflection coefficient casé; are
much more complicated in the acoustic wave scattering problems.
Owing to the elastic property of the medium when 8, increases,
the generated waves change mode from one to another and the
reflection and transmission coefficients change very rapidly.
If the rough surface is chosen to be a gehtly rolling surface
(T>>0), the probability distributions of the slope w(g~“) are

(i). Gaussian correlated surface:

T 12¢ 12 (4.59)
‘) = exp [— J' .
w(g”) T ’——7—40

(ii) . exponentially correlated surface:

w(g') = " exp |- nglz . (4.60)
'/21r02 202

w({”) in Equations (4.59) and (4.60) imply a more dense distri-
buiton in the neighborhood of zero slope. If 8, is also chosen

to be small angle, the value of R can be averaged over as

R(0,,£7) = R(g’=<g>)= R(9,),since <¢"> = o . (4.61)

For longitudinal wave incidence with el=b, from Equations (3.17)

and (3.16), the reflection and transmission coefficients are

defined as

Reflection coefficient

R, (8)) = 227%1 , (4.62)
Zz+zl
Transmission coefficient
DlZ(el) - _zZ: % ) (4.63)

- zz'rzl ?;
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where

2%, P11
, = —m

coso, 1 cos8,

. (4.64)

If the #2 medium is free space or air and the #l medium is

liquid or solid

]
|
—

-

]
o

(4.65)
Under the previous assumptions, a and b in Equation (4.14) are
considered to be constant and the general Kirchhoff approximation

can be applied to the acoustic wave problems.



5. ACOUSTIC WAVE SCATTERING FROM LAYER

5.1 Layer with rough interface in the back

The evaluation of the scattering field from a very thick
layer with roughness in the back is a direct extension of the
scattering of a rough surface. Thickness d (Fig. 4) is assumed
to be

d>>1L,
so that the smooth boundary of the layer is at the far field of
the random rough boundary. The layer to be discussed is a layer
without absorption, so that the wave can transmit in it with-
out attenuation. The smooth interface has the following char-

acteristics, at z = 4:

|E5| = Dy, [Ey] ' (5.1)
|E;| = Dy [E,l : (5.2)

where El’ E2, E3, and E4 are shown in Fig. 4, and D12’ D21 are

the transmission coefficients.

5 1 222
= m ’
12 m zz+zl
22
1
D = Mm ——
21 zz+zl
z, = OZCZQ ’ (5.3)
Zy = P11y ’
)
m=_° .
P

The rough surface in the back has the same statistical properties

as before. Then,
- & N
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P>,
_ elkl r+1k3dsec93 , (5.4)

>,
=D 1k3-r+1k3dsece3 , (5.5)

12

The mean scattered field <E4> at a distance Rl from the origin is

a2 o
ik3Le1k-rl+1k3dsece3
<E4> = “Rl Dlzcos 93e

-9/2,,

F .
31, sinc vxL, (5.6)

where g and Ve is related to k3 and

> . > >
k3 = k3 (sin eBXd - Ccos 93 zo) ’
c
= I1¥ | =20, ‘1o _ 27
ky = k3l = =5 gy, = M27x / (5.7)
[o]
clp sin el sin o
_ _ _ . . . .
n12 =3 sTh 93 = 3Tn 64 is the Snell's refraction index. The

mean scattered power for a very rough surface (g>>1l) is
2 a v

2T2
_ 2, TF 2 = X
<E4E4*> = —5—5 COS 8457~ D12 Y g expl 15 ] . {(5.8)

After passing through the smooth interface, the mean scattered

field and power, from Equations (5.2), (5,6), and (5.8), are

ikRo+ik3d(Spce3+Spces)

ik3Le F _-g
<Ep> = T(R_+2d56C0 ) Dy Dy, c0885 53 e “sincv,L ,
(5.9)
k32L20122D212cosze3 TFZ - vsz2
* = . —— -—
<E2E2 > 5T g exp [ g ] .(5.10)

2
i (Ro+2dsece3)
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Since
ikLeikR‘Ocose1
E = ’
20 wRO
‘kszcoszel
* =
<EyoB20™> 73 '
T R
o
so that, for Ro >> 2dsece3 ’
<E.> . cosb
_ 2" _ i2k.dsecs 3 ,F -g/2_.
<p> = E20 —ﬂnDlZDzle 3 3¢ &Eq )Ee s:.ncvxL .

Using Equation (4.37), the variance of p can be calculated for
different statistical properties of the rough interface.

(i) Gaussian correlated surface:

cosze 2 — v 2T2
- 2 2 2 3 .TF&:‘ /1 - X
cOSs 91
(5.12)

(ii) . Exponentially correlated surface:

2 2 2,608 83 g2 gT
Dip} = ny5™ D13 Dyy (—5) g - (5.13)

6, = -6 P R=-1 ’

1+cos(e3+e4) 2

F = -RSpce3'cose3+cose4 = sec e3 !

<
I

= k3(sine3-sine4) = Zansine3 = 2ksinel '

<
|

= - : = - 2 ain?
z k3$Jne3+cose4) 2n ,kcose, 2k/nl2 sinc6, ,(5.14)
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22 _ 22, 2 .2
g=v,"0" = 4k“o (nl2 sin 61) '
o, =

12 sz

The quantities in Equations (5.11), (5.12) and (5.13) show the
backscattering from the rough surface in the back of the layer.
The backscattered field from the smooth interface in the front
of the layer is negligible except for the normal incidence case,
wp}ch is equivalent to the reflection in the specular direction.
If the pulsed signal is used to approximate a monochromatic plane
wave, the backscattering from the front surface can be easily re-
jected by adjusting the gate position in the experimental measure-
ment.

In the actual case, all layers are more or less absorptive.
For a layer constructed with a material which has an attenuation

factor a, <p> and D{p} should be modified as follow:

. cosé
1y2/k3 (cose3)2x
1

<p> = n12D12D21e12n12kdsece3'e

2
T, exp[-2dasect,- 3 2(1- ——7)151ncv L . (5.15)

2 X
3

(i). Gaussian correlated surface:

cosb
2 2. 2 32TF
D{p} = ny,"Dy5 Dyy ‘cose /5T L

v 2T2

s exp [-4ddsect - ; Tl i ] ; (5.16)
gL 3
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(ii). Exponentially correlated surface:

2 2
2 5 5 cose3 2 F2 g(l-a /k3 )

D{p} = n,,"D,,"D —_— S, .
12 “12 “21 GZoss, 'L gz(l_az/k32)z+vsz2

exp[-4adsee3] . (5.17)

The quantity az/k32 \s usually very small, so that (l-az/k32)¢=1,

but exp[-4adsee3] is very important, it is nearly unity at low
frequency, and decreases very fast as frequency increases.

For a layer with a very rough interface in the back
<p> = 0 . (5.18)

It is observed that the wave backscattered from an absorptive
layer with rough side in the back, the attenuation by the absorp-
tion increases as frequency increases. Aside from the attenuation
by the laver, the wave backscattered from the rough side of the
layer has the same characteristics as from a rough surface of the

same statistical property, except for a changing in magnitude.

5.2 Layer with rough interface in the front

The acoustic wave passes through the rough interface into
the layer, and comes back through it after being reflected by
the smooth interface. The mean scattered field is negligible
if the rough side is very rough, but the mean scattered power;,
owing to the complicated phase relationship, is difficult to
evaluate. A tentative try without experimental support is made
here to look at some aspects of the nature of the backscattering

from such a layer. If it is proved to be successful, the same
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method can be extended to the layer with both sides rough.
As a first step,; the field transmitted into the layer after
the wave hits the rough front surface is found by considering the

field at Q(Fig. 5),

_1 ¥ _ L3E
E3(Q) = Ir II(EEH Wan)dS ' (5.19)
s
where
ik.R -ik,-T
y = & 3 oR 3 (5.20)
o
(E)s = (1+R)E1 ’ (5.21)
JE _ _ o2 '
3n . = ji(1l R)Elk1 r . (5.22)

From the boundary conditions of the acoustic wave reflection,

for small incidence angle el ’

k) (1-R)E; = k,DE; ,
pq (L+R)E; = p,DE; ,
P2
(14R) = —<D = mD (5.23)
Py
k c
(1-R) = EED = _10p - pnp (5.24)
C
1l 2p

Substituting Equations (5.23), (5.24) into (5.21) and (5.22)

(5.25)

(E) = inDE,%, ¢ X (5.26)
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Substituting Equations (5.10), (5.25), (5.26) into (5.19),

E4(Q) = z‘% “[muzl(-wﬁ n) - w(inDElEl-ﬁ)]ds ,

s
where
2+ o ainr + -+
n 31n8xo cosBzo '
> _ U2 + ()->
r = xxo E(x zo ’
> > >
kl = k(sinelxo - coselzl) ,
> , +> >
k3 —A?#‘s}ne3x° - cose3z°) '
> > >
W=kl-k3
N . <> e g
= k(51ne1 - n s:.ne3)xo - k(cosel - n cose3)zo
_ -+ + -+
= Wy¥o Y220
ds = secBdx ’ tang = £(x) .
so that,
. L
. k.R >
- _ inke'*3% a iwer
E3(Q) = T I-L(azlb)e dx ’ (5.27)
where
a= D(sinél + m sine,) , (5.28)
b = —D(cosel +m cose3) .

For smooth interface, & = & = 0 ,




E3(Q) = /I r x“dx ’
°© -L
or
. inkR
E.(Q) = - inke oL D(cos9, + m cos6,)sincw_L . (5.30)
3 21rRO 1l 3 X
For the direction 93 = arc sin ( %sinel ) ’
. inkR
- _ inke o
E3(Q) = - ==—5p—H Dlcosey +m/y "1 52, ) . (5.31)
o) n 1l
E3(Q) =0 , otherwise.
For a rough interface,
. L
. inkR \ s
Eg(Q) = - RFe 0 [-(b+a’X )[ e™" Tax]
o z
-L
- inkefnkRoD.l-mn+(m-n)cos(63—91). eia-;dx
- 41rRo cosé, - n cosfy ’
-L
or L
inkR > >
- e L] iw-r
-L
where,
G- - inkD.l-mn+(m-n)cos(62-el)
20 cosel - n cose3 !

wer = K [(sinel—n sine3)x-(cosel-n cose3)E] . (5.33)
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Equations (5.32) and (5.33) are analogues of the equations for
scattering from a rough surface. The mean field and mean

scattered power can be written down in similar form.

. h
elnkRo c - .
<E3> = _T!;_.ﬁ e Sanwa . (5-34)
If it is a very rough interface (h = w2202>>l) ’
<E3> 2 0

and,

(i) Gaussian correlated interface:2 2

E.E.* 16° S [ x T ] (5.35)
< > = — T exp|-=-Fp— ; .
373 ZLR Yy h

D - My S gy v SN (5.36)
o x

Equations (5.32) to (5.36), which are derived under the assump-
tion that thg incidence angle to be very small, show the pro-
perties of the transmission through a very rough interface. The
next step is to find the effect of the layer's second interface,
thus obtaining the overall effect of the layer with rough side
in front. This layer is essentially the same as the previous one
in section 5.1, except it has been turned over with rough side
facing the incident wave (Fig. 6). The field E, strikes the
lower plane interface at z = 0 and produces a reflected field E4
in the specular direction only (see Fig. 6). If R, is defined

as the distance from the point 0; to the point of observation Q
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below the rough interface, then

e:Lnle G

R
Ey="g | ¢! ey
~-L

and the reflected field E4 is related to E, by the following

3
boundary condition:

(E (R

4)z=—q = (Ry3E3) o q -

Under this boundary condition, the field E4 incident on the rough

surface from below is

: (L
i2k,dsece; > > >
(e "3 n .G iwy-r ik, er
(E4)z=£(x)-(2(d-€)sece3 Ry3'3T J e 1dx1/) e™"4 72 (5.37)
=L

The transmitted field EZ(P)G3 caused by the incidence of

(E4) can be derived from Equation (5.32), here the subscript

z=¢
8,4 denotes that the field Ez(Pkbis contributed only by the com-
ponent of E4 in the direction of f4. Then,

. L.L
i2kydseco3, _ikRp G,G T
=& ‘e . 12 i(wyr,+w,r,)
B2 (P)O3="r (@-FIsecs, 123", 2 e 171772 "27dx,dx,
L°-L
(5.38)
where
c - - 1nkLD12'l—mn+(m-n)cos(93—61)
= 14

1 2T cosb, - ncasé,

. 1 11
. = - lKLDzl.l-ﬁE‘F(ITE)COS(ez-e3)
2 27 cosf,-1 cose, !
n
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£+
]
~¥
!
=¥

k(sinel - n s:.ne3)xo - k(cose1 - n cose3)zo

-+ -+
= Wy %o + Wa1%g , (5.39)
-+ > >

o >
= k(n sine3 - s1nel)x° + k(n cose3 - cosel)fo

>
wx&xo + szfo R

- -+
ry = xyx, + E(xl)fo ’
-+ -+
Iy = XyX + a(s+x2)§o .
It should be noted here that ;1 and ;2 are refered to origins Ol

and 02, respectively. And more-over, since the maximum value of

£(X) is much less then the thickness of the layer, so that,

L (L
12k3dsece3 ikR G,G > > > >
_ € ce”" 0, 172 i(w,ery+w,r,)
Ey(Plg_ = 3R dseco Ry3°*——3 e” "1 71772 "27dx,dx,
3 (o) 3 4L
~L/=L
(5.40)
In the backscattering direction, 6, =6, , then
o oo inkLDlz.l-mn+(m—n)cos(93-91)
1 2n cosel-n cose3 ’
\ 1,11
. - . 1kLD21.1—53+(ﬁ-H)c°5(93+el) 5.40)
2 2T cosf,-n cos , *
1l 3
Wl = K(sinel-n sin63)§o-k(cosel-n cose3)'£o '
Wz = k(sinel+n sine3)§o-k(cosel—n cose3)30 .
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From Equations (5.40) and (5.41), the mean value of EZ(P)93 can

be found,
el2kdsecoty  ikRo - G,46,
<2 (P) 83> = 3R dsecs, "Raziz | | W RrPeR) 92192,
L,L

> > > >
ei(wl’r1+w2w2’dxldx2 , (5.42
-t} -1

where 8 in Equation (5.42) is the separation factor between £

and 52 '

8 = (2d+zl+£2)tane3 .

Since lcmax|<<d ,

8 = Zdtan63 . (5.43
Hence, from Equation (5.42).
<E,(P)6,> = Arexp[-h(1l+c(s)] “sinc(kL(siné,-n sine,))

-sinc[kL(sinel+n sine3)] (5.44)

where

h = szoz

W, = -K(cosé,-n cose3) . (5.45)

(o) 3 4L

From Equation (5.44), it is seen that if the front interface is

very rough (h >> 1),



-46-

<E2(P)e3> = 0

and,
n/2
<E2(P)> = <E2(P)e3>de3 =0 . (5.46)

-n/2

The evaluation of <E2E2*> is very much involved, approxi-
mations have to be used throughout the derivation. From equation

(5.40),

LLLL
> > > 4+ > >
(EjE,*) , = ARM elWy  (ry ry)+iw, e (Xy-ry) 4y

! ]
63 1dxzdxldx2 (5.47)

-L-L-L-L

where the subscripts 1 and 2 are referred to the origions 01 and

*
R

02, respectively (see Fig. 6).

The mean value of (EZEZ*)O3 over the rough interface is
LLLL

<(E2E2*)e3> = AA® <ein(51‘51')+iwz(51-£2')>

=-L-L-L-L

/ o /
celWy (X %Xy) +iW, 5 (%= xz)dxldxzdxl'dxz' (5.48)

and from Mood ( Mood 1963 ), the 4th order characteristic func-

tion associated with Wz is
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xq(s,m = <eiw‘z (El-EiHle (52-55) >

=J’ g W(zl,zz,zi,zé,r,s)eiwz(51—5£)+1W4§2-§2)

dz.,dz.dz;dz’

17°27°17°2
h
= exp[} 7(2+2c(s)—2c(11)-c(s+11)fc(s-rl)
- B(2+2e(s)-2¢ (1) ~c (s+1,) ~c (s=1_) | (5.49)
2 2 2 z d °
where
rl=x1-xi , and 12=x2-xé . (5.50)

For a Gaussian correlated random surface,
2 ,m2
c(t) = e ' /T R
and as seen from Equation (5.49), the 4th-order characteristic

function x,(s,t,,t,) is equal to zero except when
4 1772 q

s<«<T, Tl<<T, and rz<<T . (5.51)

In the case shown in Equation (5.51),
: 2 2 2
x (s, T, Tye (1T /r ] (5.52)
Introducing new coordinates,

l rd 1 P
y; = 7(xl+x1), and Y, = 7(x2+x2),

and using Equation (5.52) for a very rough layer, Equation (5.48)

becomes
L L L.L ri Tg
_ =2h(—5 + —5) _iWg)t+iWyot :
(E2E§)e3 —AA*»S g ‘ S e T2 T2 .e” X drldrzdyldy2
=-L-L-L~-L

2.2 2 2
2h * €XP 8h *A2n "SXP 8h
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or
2 2
2 Wy, +W ]
2 nT 1 7'X2 2
<(E2E3)G?=ZL AA*'—h—' «eXp [ —T T P (5.53)
where
h=k202(cosel—ncose3)2 ’
(5.54)
2 2 2, .. 2 2 . .2
wx1+Wx2 = 2K“(sin el+n sin 63).

Substituting Equation (5.54) into Equation (5.53),

2.2

: 21T L AA*
((ELER) 8) = 55
272773 K oz(cosel-ncose3)2

-QXF’[;T (sin291+n2sin293)/402(cosel—npose3)%]

(5.55)

In Equation (5.55), <(E2E5)93> is significant only when 6,
and 65 are very small angles, i. e.,

51nel=el ’ cosel=l .

sin93=e3 » cosba=l . (5.56)
Then, the limit in the integration for obtaining <E2E3> can
be extended to infinity, so that

n/2
<32E5>= S {(E,E%) e3)de3
..1(/2

2 1rT2

K262(1-n)

2,.2 2 2

(4 2
where 1 11
2 2,4.4.2 2 (—mn+(m-n))~ 1_——-_-+(——-—))
23 nK'L DlZD21 \ ( mu ‘m n

3 >

o]

4d2Rg~16L4 167 (1-n) 4
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Rewriting Equation (5.55),
2 2 212 4
R23D D5, L7 (1+4m)

CELES H= 12 21 — k2T exprelr?/acta-n)?]  (5.57)
2567 2a’R2m®|1-n]|
K2L2
Since E20E50=—7—7 » and By>*0, the variance of the scattering
m R
o
coefficient p becomes
E,E*
D{p} =<2_..._._2-2
*
20820
4
R,,D,,D,, (1+m")
23712721 T. 2,2 ,, 2 2
—— p .exp -6;T"/4¢" (1-n) (5.58)
256 wm|1l-n| 0d2 1 . |

From Equations (5.46), (5.55) and (5.58), it is seen that the
backscatter from a layer with rough side in front is much smaller
than that from a layer with rough side in back. Moreover, the
parameters of the media has more influence on the backscattered
power as compared with the previous one in Section 5.1, and as
the incidence angle °1 increases, the backscattered power drop
off very rapidly.

5.3 Discussion of the derivation

‘(A) Rough side in back: The fieldsAE3 and E, in the layer have
been assumed to be caused by a plane wave and the amplitudes are
independent of the thickness "d" of the layer. 1If the thickness
d is much larger then the illuminated length 2L, the amplitudes

of E; and E, will depend on the value of d. From Equation (5.3),

4
introducing the dispersion caused by the thickness of the layer,

the value of E, given by Equation (5.5) will be changed to

- -
in12keik3-rl+1k3dsece3

E3 = - 7R

- LDlz(cosel+mcose3). (5.5a)
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A similar modification should be made on E4 and E2 also. The
results of these changes in E,, Ej, and E, will modify D{p} of

Equations (5-12) and (5-13) to the form

2,2
6 2 .2 2 4 4 3.2 v, T
bio} n),P1pPy Co8 63 (cose,+mcose ;)" k'L TF ji:' exp - X
32n4m2 coszel d4 g 49
(5.12a)
(ii) exponentially correlated surface:
6 .6 .2 2 4 432
D{p}=P12P1oP2) 08 ¢3lcasg+mcose;) ”  kLFT - gT (5.13a)
161r4m2 coszel d4 g2+V)2(T2 .

(B) " Rough side in front: Under the same condition, D{p}

in Equation (5.58) should also be modified to the form

2.2.2 2 2 4
D{p}=" X R23P1205) 1*0 ) 2. exp[-671%/40° (1-n) 2 ] (s.58a)
2567°m° |1-n| od?

D{p} in Equations (5.12a), (5.13a), and (5.58a) are derived
under the condition that the lafer is very thick. However, in
most cases, d is not so much larger than the illuminated length,
and the Equations (5.12), (5.13), and (5.58) give us a good

estimate on the value of D{p}.

-e



6. EXPERIMENTAL WORK

6.1 Experimental set-up and procedure

The experimental measurement of the variance of the scatter-
ing coefficient has been done in the Underwater Acoustic Labora-
tory, Electrical Engineering Department, Kansas State University.
Details of the equipment can be found in the report by Toliver
(Toliver 1965). The block diagram of the experimental set-up is
shown in Fig. 7.

In the experiment, pulsed signals generated by the pulsed
oscillator are sent out and collected by one pair of transducers
in the water tank. For each single pulse sent out, the received
signal will contain a train of pulses. A gating circuit, which
is synchronized by the delayed trigger output from the pulsed
oscillator, is used to select the portion of the pulse train for
feeding into the detector and boxcar circuit. The boxcar cir-
cuit has the function of converting the discrete pulse into an
analog signal so that it can be recorded by the graphic level
recorder.

The distance S from the transducers to the front side of the

target is determined by

S = Dcosel (6.1)

©, and 10°, and D is the distance travelled by

where el = 0°, 5
the radiated signal before it hits the target. It is desired

to have D as large as possible so that the illuminated area will
be much larger than the correlation distance of the random

interface. The choice of 32 inches is made to give an average

-51~
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value of L = 0.75 inches for different pairs of transducers. The
pulse recurrence frequency, PRF, is also determined by D. It
is selected to be the largest value without causing any overlapp-
ing of the first few returns with the following pulse sent out
from the transmitter. And the pulse length, which should be as
larger as possible to simulate a monochromatic wave, is limited
by the thickness of the layer. The pulse length must be less
than the time that is necessary for the wave to make a round trip
in the layer. A safety choice of PRF and pulse length for the
model target constructed and the distance D specified is as
follows:
pulse length = 20 usec,
PRF = 250 pps.
The operating frequencies are chosen to be
0.72, 1.0, 1.28, 1.6, 1.9, 2.25, 3.0, and 3.5 mc.
Before the measurements of D{p} start, the folliwng pro-

cedures are conducted at el = 0o

+ S =D =32 inches, £ = 1 mc.

(a) The target suspension is carefully checked by the
returned pulse position on CRO to make sure that D
is equal to 32 inches for all possible positions of
transducers.

(b) Transducers focusing is done by adjusting the mount-
ing of transducers for maximum return from a smooth
plane target 32 inches apart.

After checking on the mounting of target and transducers,

measurements proceed as follows:

(¢) Setting the operating frequency with the help of test

oscillator and CRO.
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(d) The pulse length and PRF is set at pulse length = 20usec.
PRF = 250 pps.

(e) The RF output level and the transducer compensator is
adjusted to yield the best possible undistorted pulse.

Procedures (c¢), (d), and (e) are conducted iteratively to

fit all the figures required.

(£) Measurement IE20| : the water-air interface is used
as target, because it acts as perfect reflector; and
D = 32 inches, 91 = 0° are carefully checked. Then

the magnitude recorded by the recorder gives

M, = KlAB|E20| (6.2)

where A is the magnitude of the output pulse, B is the
gain of the transducers, and Kl‘is the overall gain of
receiver and recorder.

(g) Varying 6, to the desired angle (0°, 5°, 10°) and
setting S according to the relation shown in Eguaticn
(6.1), then |E2|, which is a function of the horizontal
position of the transducers, is measured by scanning
the transducers through the target. The gate is ad-
justed in the way that only the return from the back
side of the layer is detected and recorded. The sample

magnitude of a point on the recording sheet gives

M, = K,AB |E,| , (6.3)

2
where K2 is the overall gain in this measurement. The
ratio of K, to K, can be read from the settings.

Since <p>=0, so that the variance of the scattering coef-

ficient is
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2
stor = <lol% = <2 og _,.> &)
E20
or
<M§>
D{p} = + 10 (

whefg de = (Kz/Ki) in db is the ratio of the overall receiver
gain between the méasurement of |E,\ and [Ezo\. Attention must
be paid not to overdrive any stage in the steps (£) and (g).

K, is adjusted to give the maximum possible recording without
causing saturation in any one of the amplifiers and in the
recording devices.

6.2 Description of layer target

The target is a block of plexiglas with a one-dimensional
roughness on one side. (Fig. 8). The length of the plexiglas
is limited by the dimension of the water tank; the width is equal
to 6 inches, which is much greater then the illuminated area of
any pairs of transducers; and the thickness, which should be as
thick as possible, is limtied to 2 inches by the material avail-
able at the time of construction. The profile of the rough sur-
face on the layer is desired to have a Gaussian probability
distribution in height with standard deviation ¢ = 0.05 inches,
and to have a gaussian autocorrelation with respect to the
horizontal position, where the correlation distance is T = 0.15
inches. The profile is calculated by trial and error with the
help of an IBM 1620 computer. It is noted that the heights be-
tween -30 and +3¢ were considered in the calculation, and the
sample heights obtained from the truncated normal distribution

are 8o arranged that there is no sudden or periodical variations.
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The profile obtained was then cut by a shaping machine. A sample
measurement at intervals of 0.05 inches was then made on the
finished target and the distribution and correlation functions
were calculated.

The measured standard deviation and correlation distance are
0.0465 inches and 0.15 inches, respectively. Moreover, the
measured correlation function lies between Gaussian and exponent-
ial, and consists of certain periodical variation when the
separation factor is greater than the correlation distance T.
Moreover, the distribution of slope is found to be different
from normal and to have a pair of extra peaks at £ “=tan (10°).
This might be caused by the shape of the cutter of the shaping
machine.

6.3 Measurement and results

The quantity Ml of Equation (6.1), owing to the drift in
the electronic circuit and the disturbance in water tank, is
usually a function of time. After the disturbance in the water
has died away, the fluctuation of My with time is nearly zero.

The quantity M, is a varying positive quantity, the mean of Mg is

n
2
¢Miy=3i s (6.5)
i=1
and Moy denotes the ith sample of M,. The variance of pp* is
as follows

D{pp*} = <92p*2

M3 (K <M22>2 Kab/s (6.6)
L22 . o Vabys) - =10

M

1

> = <pp¥*>

M)

where

4
Moy - (6.7)

]
S

<My
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The samples {MZi} are taken at equal intervals from the recording

sheet. Since part of target is not seen at bigger 8y the number

1= O°, 50, and

of samples taken is equal to 96, 90, and 84, for o
10° respectively. D{p} calculated from the experimental data is
shown in Fig. 9. As a comparison, the value D{p} for backscat-
tering from a rough surface is also obtained and shown in Fig. 10.
6.4 Discussion of results

To compare the experimental results with the theoretical
solution of the backscattering from layer, D{p} is calculated for
6, = 0°, 5°, and 10°, from Equations (5.12) and (5.13).

The parameters of water, air and plexiglas are

(A). Water:

Py = 1.0 gm/cmz
Cy = 15 x 104cm/sec,
z, = °wCuw = 15 x 10 gm/cm™-sec .

(B) . Air:
o = 1.29x10 gm/cn’

3.4 x 104cm/sec,

Q
]

z_ = 0.0041 x ld4gm/cmz-sec.
(C). Plexiglas:

p.. = 1.2 gm/cm?

P
cp = 27,8 x 104cm/sec
zp = 33.4 x ld4gm/cm‘-sec.

The reflection and transmission coefficients at the plane
boundary of two isotropic medium as given by Equation (5.4) are

calculated for the following cases
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22 o}
D,, = ———>Pu x ¥ = 1.15
12 zZ + '
P W °p
= 2z P
P21 = ¥ x B = 0.744
“p ‘w P
Z_ -2
a °
R = F -1 .
22 za+zp

Other parameters are given as follows

=S¥ o

The effective illuminated ;rea represented by L is a rather
complicated quantity, it is assumed here to be equal to the
illuminated area by one pair of beam-limited transducers; mean
value is taken for five pairs of different tranéducers.

L = 0.75 inch.

The theoretical solutions Equation (5.12), and (5.13) are
calculated and shown in Fig. 11(a), 11(b), 1l1l(c). The experi-
mental results are also shown in these figures.

The relations among frequency, wavelength, and ratio o/

related to plexiglas are calculated and tabulated below:

Frequency (mc) A (mm) Ratio o/A(S=1.18 mm)
0.72 3.86 0.306
1.00 2.78 0.425
1.28 2.17 0.544
1.60 1.74 0.679
1.90 1.465 0.806
2.25 1.235 0.955
3.00 0.927 1.27
3.5 0.794 1.49

From Fig. 1lla, 1llb, llc, it is seen that the measurements of
D{p} deviate considerably from the theoretical solutions from a

layer having either gaussian or exponential correlated rough inter-
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face. This can be explained by the existence of an attenuation
factor a in the layer. If o is a non-decreasing function of
frequency, the Equations (5.12) and (5.13) should be modified to
the form of Equations (5.16), and (5.17). The modified results
are such that D{p} is reduced at low frequencies and decreases
faster as frequency increases. For such a choice of a, the
experimental results are then expected to lie between the modi-
fied theoretical solutions. Since the target constructed is such
that the correlation of the thickness lies between e_Tz/T2 and
e-lti/T, the experimental work proves that Equations (5.16) and

(5.17) are a good prediction of the backscattering of an acoustic

wave from a layer with the rough side in the back.
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7. CONCLUSIONS

The backscattering from a layer depends on the thickness,
acoustic impedance, and the statistical parameters of the rough
side. It also depends on the angle of incidence and operating
frequency. The thickness of the layer enables the separation
of the second pulse from the first one. 1In case of an absorp-
tive layer, the wave propagated through the layer is attenuated.
The attenuation may strengthen the frequency dependence of D{p},
if the attenuation factor o is a function of frequency.

D{p} obtained from a layer with rough surface in the back
has substantially the same form as that from a rough surface,
on the condition that the layer is constructed with non-absorp-
tive material. If the random side is very rough, the value
of D{p} decreases very fast as the ratio o/\ increases where o
is the standard deviation of the rough interface; and for small
angle of incidence, D{p} increases as o/) increases.

If the layer is turned over with rough side facing the
incident wave, the evaluation of D{p} involves an integral which
contains a four-dimensional characteristic function associated
with W, . Approximation is made by assuming 63 very small in
evaluating the integral. The theoretical solution for this
model has a very strong dependence on the thickness 4, even if

the layer is non-absorptive.
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APPENDIX: EVALUATION OF INTEGRALS

The integration of the improper integrals

’

b 2 2,
S e X /2a e1bxdx

g“ e—x2/2a2cosbxdx, and
)

© 2,02 ...
e ¥ /2a e1(b 1c)xdx

involves contour integration. Choose the contour as shown

ARY
)
—g 2 -k
A
_.R - O gl R Bl X
2
R a’b
2 2 2 2 sy 2 2
é?e z7/2a dz=lin|g e X /2a dx+lim e (R+iy)“/2a dy
R+ -R R+=» o
-R o
Ctensn2 2 PR S
+lim\ e  (¥¥ia™D)/2a%,, g 4n | T (RHIY) /227,
R+ R o 2
R a’b
=0 .
[ 4
or,
) 2,2 ® 2,2 ” . 2 2
4;e z%/2a% 5, =\ X /2%, _ S 50«1a b)/2a% 4,

0,



-68-

or
~(x+ia’b)/2a%. -(x-ia’b)/2a> X2t g
e + e dx = *
o -0
2,2 2 2 . .
e(—azb )5 ex/2a e 1bx+e1bx ax = "27a2 .
(o]
2 2 2,2
e~X /23" opxdx = jghaé%a b /2) (1)
0
Since
® 2 ® 2,2 © 2,2
e X ;Za .elPXay = g e X /28" o pxax f) e ¥ /287 4 nbxax
® 2,..2
= 25 e X /2a cosbxdx+0 ,
o ', 1
So that
® 2,..2 . 2,2
e X /2a .elbxdx = /271a2 .e 2 b*/2 (2)
And also
® 2 2 ® x2
e X /2a .el(b-lc)xdx - e-(732+cx).elbxdx
® _(x—azc)2 eib(x-—azc) eazc2
= € 2a
- .2
.el® bcd(x—azc)

.2 2
VZraZ.el? bc.exp [—%—(bz-cz{] (3)
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